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A fast computer code has been developed to calculate free-boundary solutions to the plasma 
equilibrium equation that are consistent with the currents in external coils and conductors. 
The free-boundary formulation is based on the minimization of a mean-square error E while 
the fixed-boundary solution is based on a variational principle and spectral representation of 
the coordinates x($, 0) and z($, 0). Specific calculations using the Columbia University 
Torus II, the Poloidal Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor 
(TFTR) geometries are performed. c 198s Academic PESS, h 

I. INTRODUCTION 

Numerical solutions of the equations describing toroidal plasma equilibrium con- 
tinue to play a central role in the magnetic confinement thermonuclear fusion 
program. Experimentalists are increasingly using these solutions to interpret 
experimental data and to design new experiments. Theorists are using them as 
starting points for realistic stability, transport, orbit, and ray tracing calculations. 

A recent development has shown that a spectral representation can be used effec- 
tively with a variational principle to obtain efficient equilibrium solutions if the 
shape of the plasma-vacuum interface is known [ 11. The spectral method has been 
shown to be particularly useful for obtaining very rapid “approximate” solutions to 
the equilibrium equation in which only a few basis functions are retained, but the 
gross features of the solution are nevertheless calculated reasonably accurately. 
These approximate solutions are often adequate for experimental studies or for 
gross theoretical parametric studies. 

In this paper the spectral variational method for finding numerical solutions to 
the plasma equilibrium equation is extended to the calculation of free-boundary 
solutions that are consistent with the currents in external coils and conductors [2]. 
This is naturally done by the minimization of a mean-square error E which 
measures the deviation of the plasma-vacuum boundary from being an exact 
magnetic flux surface. The fixed-boundary variational principle gives a set of 
coupled second-order ordinary differential equations for the spectral amplitudes of 
the coordinates x and z once their boundary values are known. The minimization 
of E yields a set of coupled algebraic equations which self-consistently determine the 
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boundary spectral amplitudes. Thus one can envision an iteration scheme where at 
each free-boundary iteration step a fixed-boundary problem is solved. 

In Section II, the mathematical formulation of both the fixed-boundary and free- 
boundary problems is given. The method of solution is described in Section III. 
Code verification and applications are given in Sections IV and V, and a summary 
is given in Section VI. 

II. MATHEMATICAL FORMULATION 

A. Variational Principle for Fixed-Boundary Equilibrium 

In this section we state a variational principle which forms the basis for obtaining 
spectral solutions to the equilibrium equation in magnetic coordinates for a fixed 
shape plasma boundary. This formulation is augmented in Section D to provide a 
prescription for determining the location of the plasma boundary consistent with a 
set of external current-carrying coils. 

In the cylindrical (x, 4, z) coordinates (Fig. 1) the magnetic field in an axisym- 
metric toroidal system can be written as 

ti=B,(VdxVX+R,gV#), (1) 

where R, is a constant with dimensions of length, x is the normalized poloidal flux 
function, IV& =x-l, and g = g(x) is the dimensionless toroidal field function. The 
overall constant B, is present in the coded implementation of this method but will 
be suppressed in the following discussion. To restore it, we merely multiply each 

2 
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FIG. 1. Cylindrical coordinate system (x, (, z) and flux coordinates ($, 0,)). $ is a flux label, 0 a 
poloidal angle, and 4 is the ignorable toroidal angle. 



302 LING AND JARDIN 

occurrence of x and g in the paper by B,. The magnitudes of the poloidal and 
toroidal magnetic fields are then given by 

B; = lVx[ */x2, (24 

B’T = R; g2/x2. (2b) 

We define an “action integral” A 

A = 1, dx dz L(x, xx, xz; x), (3) 

where L is the Lagrangian density 

L = x( B; - 2p - B2,). (4) 

Here p = p(x) is the fluid pressure and the integration is over the entire plasma 
volume K The functional dependence of L has been made explicit, with the sub- 
scripts denoting partial derivatives. 

A variational principle [3,4] has been given which states that A is stationary 
with respect to variations of x for x satisfying the equilibrium force balance (Grad- 
Shafranov) equation 

A*x-x*V(x-*Vx)= -[p’x*+R;gg’] (5) 

subject to the constraint that the variations vanish on the boundary, 

6~ (boundary) = 0. (6) 

Here the prime superscript denotes d/dx. Conversely, it is readily verified that the 
Euler-Lagrange equation 

aL a aL a aL -------= 
ax axaxx azax, 

o 

gives back the Grad-Shafranov equation, Eq. (5). 
Next consider a transformation from the cylindrical (x, 4, z) coordinates to the 

magnetic flux coordinates ($, 8,b) where II/ is a flux surface label normalized such 
that $ = 0 at the magnetic axis and $ = 1 at the boundary, 8 is a poloidal angle 
(0 < 0 < 27r), and 4 the ignorable toroidal angle with 1’741’ = l/x* (Fig. 1). The 
directions V$ and Vb’ are not necessarily orthogonal to each other, but both V$ 
and V8 are orthogonal to Vd. The action integral A, Eq. (3), becomes 

1 2n 
A= 

ss do d$ Lb x+, xe, z+, ze, x, xti; ICI, 0 (8) 
0 0 
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Noting that IVxj2 = 2; IV$l’ = $x2(x; + &)/J’, we find that the Lagrangian den- 
sity L is given by 

L = J[$x; + z;)/J’ - 2p - R; g2/x2], (9) 

where the Jacobian of the transformation J is given by 

J= [V~XV~~V~]-~=X(X,Z,-Z,X,). (10) 

The subscripts $ and 8 denote the partial derivatives with respect to $ and 8, 
respectively. Before the coordinate transformation, x = x(x, z) with x and z being 
the independent variables. After the transformation x=x($), x=x(@, e), and 
z = z($, 0) with $ and 8 being the independent variables. We note that at this point 
the poloidal angle 8 is still arbitrary. 

The equilibrium force balance equation in the flux coordinate system, i.e., the 
inverse Grad-Shafranov equation, is 

(11) 

Since A is independent of the coordinate representation, it must be stationary with 
respect to variations in x and z. Indeed, if G = 0, A given by Eq. (8) is stationary 
with respect to variations in x or z subject to the fixed-boundary constraint 6x 
(boundary) = 0 or 6z (boundary) = 0. The Euler-Lagrange equations 

aL a aL aaL o -------= 
ax a* ax, ae ax0 W-4 

(12b) 

will both reproduce Eq. (11). 

B. Spectral Representation 

The usefulness of the stated variational principle is that it allows us to expand the 
coordinate functions x(1(/, 0) and z(+, 0) in terms of a complete set of basis 
functions, and to vary their coefficients independently to obtain a set of defining 
equations for the amplitudes. When the series is truncated to a finite set of basis 
functions, the amplitudes obtained this way are “optimal” in the sense that they 
minimize the Lagrangian density, Eq. (9). 
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We find it convenient to let x(ll/, 0) and z($, 0) have the following series expan- 
sion: 

x(ll/, f3) =x”(t)) + JII/TE($) cos 8 + f I+P-~)/*[x~~(~) cos me + xms($) sin me], 
m=2 

(134 

Z(I), e) = zO=(t+b) + J@rl(t+Q) sin 8 +&z~=(I)) cos 8 

+ f p-W[, a,m~ms($) cos me + (~~,~xmC($) sin me]. (13b) 
In=* 

The scale factor T is introduced so that without loss of generality, the flux surface 
label Ic/ goes from 0 at the magnetic axis to 1 at the boundary. The constants go,m 
and crS,,, are independent of II/ and are usually set to + 1 and - 1, respectively. The 
elliptic’ity E here is different from the conventional definition of ellipticity 
(Em, = l/E*). The factor 1+5 (m-2)‘2 is chosen to simplify the boundary conditions at 
the magnetic axis as is explained in Section C. The poloidal angle 8 is specified 
implicitly by Eq. ( 13) since the same set of spectral amplitudes xmS(ll/) and xmC(+) 
appear in the series for both x(ll/, f?) and z(J/, 0). This has been shown by Weitzner 
[S] to be a complete representation for a two-dimensional closed curve. 

Note that upclown symmetry has not been assumed, i.e., neither x($, 0) nor 
z(ll/, 0) has specific parity about the origin 8 = 0. The presence of both the sine and 
cosine terms in the series for x and z is necessary to represent a general updown 
asymmetric two-dimensional closed curve. When up-down symmetry is present, 
only a cosine series for x and a sine series for z suffice, i.e., xmS = ztc = zoc = 0. The 
term proportional to sin 6’ in Eq. (13a) can always be made to vanish by an 
appropriate choice of the origin for the angle 8. 

With the spectral representation of x and z given by Eq. (13), the Lagrangian 
density L is a function of all the spectral amplitudes and their $-derivatives. The 
variational principle gives a natural way of arriving at the differential equations for 
the spectral amplitudes. Varying the action integral A with respect to the poloidal 
flux and the spectral amplitudes, we obtain the following Euler-Lagrange 
equations: 

aL d aL =. ---- 
ait d* aXIL > ' 

( 
aL d aL ---- 
aE d$aE, > 

= 0, 

d aL ---- 
d$ ax; > 

= 0, m = 0, 2, 3 ,,.., M, 

d aL ---- 
d+ aZT =O, > 

m=O, 1, 

(14) 

(15c) 
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---- 
aXms 

m = 2, 3 ,..., M, (15d) 

where the subscript rc/ denotes derivative with respect to $, and ( ) is the poloidal 
angle averaging operator defined by 

(A)=&j2’AdB 
0 

for some function A. Its relation to the volume-weighted flux surface averaging 
operator (A )r is 

GOf= (JAY(J). (16b) 

It is also useful to define the differential volume Vti as 

(17) 

We note here that Eqs. (14) and (15) can be written in terms of the operator G 
defined in Eq. (11) 

(JG) =O, 

( (xze cos 0 + Ee2xxe sin 0) G) = 0, 

( ( - xzo cos m0 + cr,,,xx, sin me) G) = 0, 

((xx@ cos md) G) = 0, 

( ( - xzg sin m0 + (T,,,xx~ cos m0) G ) = 0, 

m = 0, 2, 3 ,..., M, 

m=O, 1, 

m = 2, 3 ,..., hf. 

(18) 

(194 

(19b) 

(19c) 

(19d) 

From the form of Eq. (19), we see that the variational method summarized by 
Eq. (15) is equivalent to multiplying the flux coordinate form of the equilibrium 
equation G = 0, Eq. (1 1 ), by appropriate combinations of sin mtl and cos me, and 
then averaging over the 8 dependence. The variational method gives an optimal 
prescription for taking the angular moments once a truncated set of basis functions 
is chosen. 

It is convenient to introduce some new notation. Let 

3~ (E, x”=, x2=, x3’, zoc, zl’, x2’, x~~)= (204 

be the spectral vector for the first three harmonics and 
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be that for the higher harmonics. Here the superscript T denotes the transpose of a 
vector. Then Eq. (19) can be written in the form 

Al(~,s,,s;s;,,~)-s,,+d(~,~~,s;s;,,~~,,~)=o, (21) 

cl(3, s$/, i, sj, I))..?$, +d(S,S,,S,,,s;s’,,~)=O. (22) 

Here A” is an 8 x 8 matrix, 0’ an 8 x 1 matrix, a” a 2(M- 3) x 2(M- 3) matrix, and d 
a 2(M- 3) x 1 matrix. The elements of A”, d, ri, and d are given in Appendix B. In 
Eqs. (21) and (22) we have suppressed the dependence on x, x+, and xIL*. 

Equation (18) can be interpreted as a defining equation for the poloidal flux x 
once the geometry, the pressure p(x), and the toroidal field function g(x) are given. 
It can be explicitly written as 

xtiw(x~)+~~[(x~)],+<J,~+R~($)g~=O (23a) 

or 

Alternatively, instead of p(x) and g(x), we may prescribe p(x) and the safety factor 
q(x), where q(x) and g(x) are related through 

or 

Rig: (J/x2) =q 4X$ [ 1 0 IL’ 
Rig& (x-2)ri”ti=q 

dx 

Substitution of Eq. (24) into Eq. (23) yields the alternative form 

or 

xw 1 (244q2 + v* (x~),j+rw{(2”).q[(x~~)1v~y V,W2)f 

(244 

Pb) 

Pa) 

(25b) 
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The functions p(x) and g(x), or p(x) and q(x), are normally given as simple 
power law functions of the normalized poloidal flux x/Ax where Ax = xI - x0, with 
xI - 1 ($ = 1) and x0 = 2 ($ = 0). Typically, we take the functional forms as follows: 

P(x)=PA~+ (PO-P,~,)[:(X~--X)/AXI~‘, 
g(x) = 1 - Cgpk- xY&la2> 

q(x) = qoP/Cl + 3(x - x,Y&11’z~~3~ 

Here p. and Pmin are the peak and minimum pressures, g, is a constant, and q. is 
the safety factor on-axis. 

The nature of Eqs. (18) and (19) becomes more transparent through Eqs. (21), 
(22) and (23) or (25) which form a system of second-order, nonlinear, coupled 
ordinary differential equations (ODE’s) to be solved for the poloidal flux x, the 
ellipticity E, and the mode amplitudes x”“, xmS, zoc, zl’, as a boundary value 
problem. 

C. Boundary Conditions 

Two boundary conditions, one at $ = 0 (magnetic axis) and one at $ = 1 (boun- 
dary), are needed to solve each of the coupled second-order ODE’s. However, the 
center point rc/ = 0 is not a physical boundary but rather a singularity in the coor- 
dinate system. Thus we are only free to specify the boundary spectral amplitudes 
,I&, XOr A’c Ir ,$, ‘b, Zb, xrC, and XT for m > 2, the subscript b denoting boundary values. 
The boundary conditions at $ = 0 are essential boundary conditions. 

To obtain these essential boundary conditions, x is assumed to be analytic at the 
magnetic axis and to have an extremum at IJ = 0. It follows that the spectral 
amplitudes and x have the following asymptotic behavior as $ approaches 0: 

E-Eo+EIII/+ **., 

Xoc -xo+x~l)+ ..‘) 
zOC - zo + zy* + . . .) 

Z 1C NZ~+z;CIC/+ . ..) 

Xmr-X;l”$+ . ..) 
m 3 2, 

X msmx;lSIC/+ ..-, m B 2, 

x”xo+x1~+x2~2+ ‘... 

6’6) 

Thus, the amplitudes x~~~(“-~)/~ and xms$ (m-2)‘2 for m 2 2 in Eq. (13) go to zero 
like I+V”‘~ as $ + 0. Numerically, we find it useful to factor out the $(m-2)/2 explicitly 
so that xmc and xms are proportional to II/ as I,G approaches 0, and x7, x$? do not 
vanish at $ = 0. Substituting Eq. (26) into Eqs. (21), (22), and (23), we obtain 
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derivative boundary conditions at + = 0. For updown symmetric elliptical flux sur- 
faces, we have 

oc - -T 
Xl - 2x,(Eg + 3E,2) 

I_ P’(O) E&4 
3 Xl ’ 

E, = 
1 T -- 

(1 + Ec4) 6Eox; 
E, T*p’(O) + ~(xF)~ 

24~~ TE; 

+ &(E;+4E,y’)-$(Eo-E,y3)l, 
0 0 1 

x1= - 

Here, 

Furthermore, if the flux surfaces are circular (E, = l), Eq. (27) reduces to 

Pa) 

(27b) 

(27~) 

(28) 

(294 

(29b) 

Equations ,(29a,b) are seen to agree with standard results [6]. 
For the more general case with updown asymmetry and higher harmonics, we 

have used MACSYMA to obtain the derivative boundary conditions and found 
that only terms up to and including the third harmonic appear. These conditions 
have the following functional forms: 

E, =fi(xo, E,, z:, xp, zp, zic, x:‘, x:, x;~, xp), E, =fi(xo, E,, z:, xp, zp, zic, x:‘, x:, x;~, xp), VW VW 

XT =f2(xo, E,, z:, zp, xfc, xy), XT =f2(xo, E,, z:, zp, xfc, xy), Wb) Wb) 

zp =f3(xo, E,, zg, xy, xfc, xy), zp =f3(xo, E,, zg, xy, xfc, xy), (3h) (3h) 

z;‘=f4(xo, E,, zk, xp, zy, E,, xy, x?, xTc, xy). z;‘=f4(xo, E,, zk, xp, zy, E,, xy, x?, xTc, xy). F’d) F’d) 

For the updown symmetric case, only E, and xy are nonvanishing and they are 
given in Appendix A. Note that all the derivatives are coupled in a very nonlinear 
fashion at the magnetic axis. 

In summary, for the fixed-boundary problem, the boundary conditions on the 
geometrical harmonics are: (a) At + = 1, prescribe the boundary amplitudes ??,, fb, 
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and 1, = x( 1). (b) At rl/ = 0, the derivative boundary conditions on the zeroth and 
first harmonics are given by Eqs. (30) which can be put in the form 

. + 
B.AJIS,I,=,=R. 

For m>2, x”“‘=O and xms=O at $=O. 
The boundary condition at the origin for the poloidal flux depends on which 

form is being used, Eq. (23) or Eq. (25). When using Eq. (23) in which p(x) and 
g(x) are given functions, the equation does not allow a boundary value to be 
imposed at the origin, but rather we find from expanding that the derivative con- 
dition 

x1 = 
-~CxhW) + R~k’hl 
2[Jg + E,* + (zz)*/T] 

(32) 

must be imposed. In contrast, when using Eq. (25) in which p(x) and q(x) are 
prescribed functions, the boundary value for x at the origin, x0, must be given. 

D. Free Boundary Formulation 

In Section C we described how to obtain a self-consistent plasma equilibrium 
solution when the shape of the plasma-vacuum interface is known. Here we discuss 
how to obtain that boundary shape self-consistently once a set of discrete coil 
currents are prescribed. 

The magnetic field in the vacuum is represented as 

&a, = Vb x Vx + Ro go V4, (33) 

where the overall constant B, has been suppressed. The vacuum poloidal flux per 
radian satislies 

A*x= 2 1,6(x’-i,). 
n=l 

Here x’, = (x,, z,) and (I,, x’, ; n = 1, N) are the currents and locations of external 
coils. An application of Green’s theorem yields 

(34) 

the integral being over the plasma-vacuum interface, $ = 1. Here G(T,, x’,) is the 
infinite medium Green’s function given by 

G(x’,, 2,) = -(x,x,)“* k-‘((2 -k*) K(k) - 2E(k)) (35) 
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with K(k 
with 

) and E(k ) being complete elliptic integrals of the first and second kind 

4x,x, 
k2= [(x,+x,)*+(z,-zJ*] 

(36) 

At the plasma-vacuum boundary, the coordinates xb and zb have the spectral 
representation given by Eq. (13) with tj = 1. Then Eq. (34) gives, for x’,= x’,(O), 

where ( )@ denotes poloidal angle average over 8’. In Eq. (37) the integral over 0’ 
has an integrable singularity when 8’ = 8. When the integral becomes a finite sum, 
this becomes the “self-field” (SF) contribution [7] that we now evaluate. From 
Eq. (34), we see that the self-field contribution is given by 

where x’, is close to x’, so that we have 

x, = x, + xec de’ + +xeref(dey* + . . ., 

z, = z, + zec de’ + &z~,~,(A~‘)* + . . ., 

with Al = AO’(x2 + z2 )l’* 89’ . Then k*= 1 - d2 where 6 = A1,/2x,, and G(x’,, x’,) N 
x,[lnd ” 2(ln 2 -?)I. Finally, the self-field contribution is given by 

Since the plasma-vacuum boundary is a flux surface, x on the boundary should be 
equal to a constant, xb. Ideally, x(x’,(O)) should equal xb, but since we have a finite 
representation for xb and zb, x(ZJO)) differs from xb by some error. A measure of 
this is the mean-square error 

1 
s 2n de wvc22 - duwi*, 

E=zi 0 
(38) 

where W(O) is some positive definite weighting function which is usually set to 1. 
Note that E is a function of xb, $,, and ib. 
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We minimize E with respect to xb, ,!?,, and sb. Setting (&/ax,) = 0 gives 

Xb = (dx’b(@)) 

while aqaS, = 0 and a&/a& = 0 give 

aE/agb = p( 3,) s‘b) = o 

and 
a&/aib = @( gb, s’b) = 0. 

311 

(39) 

(404 

(4Ob) 

Equations (40) form a system of nonlinear coupled algebraic equations in the boun- 
dary spectral amplitudes 3, and s’b. A free-boundary equilibrium consistent with 
currents in external coils and conductors is obtained by solving Eqs. (40), (21), 
(22), and (23) or (25) self-consistently. 

III. METHOD OF SOLUTION 

A. Fixed-Boundary Solution: Quasilinearization and Finite-Difference 

Since the second-order ordinary differential equations derived here are nonlinear, 
an iteration procedure is needed to solve them. We employ quasilinearization which 
is an application of the Newton-Raphson-Kantorovich approximation method in 
function space. The resulting sequence of ODE’s is then solved by using the tinite- 
difference method. 

To solve the fixed-boundary problem, we first solve the poloidal flux equation 
[Eq. (23) or Eq. (25)] for x by iteration while holding the geometry CL?($), Y($)] 
fixed. Next we advance the geometry one step while holding x fixed. Then we go 
back and solve the poloidal flux equation again and repeat the whole procedure 
until $(+) and S(e) have converged. This iterative procedure is described by the 
inner loop with cycle index k in the flow chart shown in Fig. 2. The relaxation 
parameters v, Oi, o, for i = l,..., 8 and m = l,..., 2( M - 3 ) take on values between 0 
and 1. The solution of the nonlinear ODE’s for x, 9, and s’ is discussed in more 
detail below. 

The differential equation for x, Eq. (23) or Eq. (25), can be written as 

x+// =f(x, xl)> $1, (41) 

where the dependence on geometry [g(e), s’($)] has been suppressed in the 
function f: Quasilinearization [S] yields the following sequence of differential 
equations: 
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s 
94 $J=O 

b.1 b,m 

S:=“l 49 s;=“(w) 

*  
-0 

(*) sl 
,41 

b,i = b.1 
P 

5 
5 L+1 

b,rn = b,rn 

$f' = Y$+' + (,-")xk 
I\ 

+ 

M"P.tiCE INTERIOR 
GEOMETRY ONE STEP 

FIG. 2. Flow chart showing the nest of iterations. The components of ($ s,) and (S; <*) are indicated 
by the subscript i and m, respectively, for i = l,..., 8 and m = l,..., 2(M- 3). The relaxation parameters v, 
Bi, o,, 52,, and Q, take on values between 0 and 1. 

After central differencing in $, Eq. (42) gives a finite-difference equation of the form 

aj$‘z,l - bj$’ + 1 +cjxi”:“,’ +dj=O, (43) 

for j = l,..., N, where N, is the number of grid points in tj. We assume a recursive 
solution of the form 

XJ+ I = ejx;z,l + fi. (4) 
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This implies that ej and& obey the recursive relations 

and 

fi= 
dj + Cjfj- 1 

bj-cjej-,’ 
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(45) 

(46) 

Equation (44) is solved by first specifying e, andf, and solving Eqs. (45) and (46) 
recursively for ej, 6.; j= 2, N, - 1. These coefficients are then used in evaluating the 
backward recursive solution, Eq. (44), once x$ 1 is given. The value of x at the 
boundary is xI so that x;zl = xI. Without loss of generality, we take 1, to be zero. 
The values of e, andf, are determined by the boundary condition at the magnetic 
axis. For the q-solver form, Eq. (25), we specify x0-x (II/ = 0); thus e, =0, and 
f, = x0. For the g-solver form, Eq. (23) we have a derivative boundary condition 
on x given by Eq. (32). Then e, = 1 and fi = -A$ xti ($ =0)- l/2(4$)’ xJIti 
(tj = 0). Here All, is the grid size and is given by 

1 
A$=-. 

N,-1 

Equation (43) is solved iteratively until x has converged for some n = N, with the 
geometry held fixed (Box A in Fig. 2). 

Quasilinearization of the differential equations for the spectral amplitudes, Eqs. 
(21) and (22), gives 

k (Sk,:l-S;,i)+Df=O (48) 

for i = l,..., 8 and 

a -.&)+d$=O (49) 

for m = 1 ,..., 2(M- 3). Here we want to solve for the spectral amplitudes at the 
(k + 1 )th fixed-boundary iteration step, Sk+ ’ and S* + ‘, given that we already know 
3” and s*. Finite-differencing Eq. (48), we obtain an equation of the form 

A”k.S~+l-~~.S~+l+~~.~~~ll+~ik=o. I J+l (50) 

Equation (50) is the matrix version of Eq. (43) and is solved in an analogous way. 
Let 

58 l/58/3-3 
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Then we have the recursive relations 

and 

~~=(~~-~~.~~~l)-‘.(~“+~~.~~-l). (52b) 

At the boundary we specify sf, where I is the free-boundary iteration step; thus 
SQ ’ = $,. At the magnetic axis, pf and 8: are obtained from Eq. (31). We solve 
Eq. (49) in exactly the same way except that here ,??t = 0 and pf = 0. Thus we have 
advanced 3” and s* to 3” + ’ and $’ ’ (Box B in Fig. 2). 

B. Free-Boundary Solution: Newton’s Iteration 

The nonlinear algebraic system of equations for the boundary spectral 
amplitudes, Eqs. (40), are solved by the Newton-Raphson method: 

S~+‘=S:,-S-l.~(S~,s~), (534 
-l+1--/ 

Sb,m - ‘b,m -J ” .p&, s”,), m = l,..., 2(M- 3). (53b) 

Here, 

and 

For the higher harmonics (m > 3), we assume a diagonal j matrix. Note that J” is 
essentially the Hessian [9] of the mean-square error E (for m = 3), and a sufficient 
condition for a solution of Eq. (53a) to give a minimum E is that f be positive- 
definite. Indeed for all the free-boundary equilibria shown in Section V, J” is 
positive-definite and E is a minimum. Equations (53) show the manner in which 9, 
and gb are advanced in the free-boundary iteration (Box C in Fig. 2). The whole 
nest of iterations is depicted in the flow chart in Fig. 2. 

IV. CODE VERIFICATION 

A. Fixed Boundary 

The accuracy of the numerical solution to the equilibrium equation is measured 
by a root-mean-square (rms) error which is obtained by substituting the final 
solution into the inverse Grad-Shafranov equation, Eq. (1 1 ), and calculating an 
average residual error. In Fig. 3, the logarithm of the rms error is plotted versus the 



PRINCETON SPECTRAL EQUILIBRIUM CODE 315 

-2.4 

-2.6 

-2.8L 
3 

NUMBER OF HARMONICS 

FIG. 3. The logarithm of the rms error versus the number of harmonics for both high-/I (19.6 %) and 
low-8 (0.26%) equilibrium. 

TABLE I 

Parameter Values for the Low-B and High-P Fixed-Boundary 
Equilibria in Fig. 3, the /I = 2.5 % Equilibrium Considered in Figs. 4 to 7, 

and the Free-Boundary TFTR Equilibrium of Table II 

Parameters Low p High /Ih Figs. 4-7 TFTR 

x0” - 0.083 -0.076 -0.3457 - 0.083 
PO 0.004 0.25 0.0373 0.004 
P nun 0.0 0.0 0.00001 0.0 
a1 2.0 2.0 2.0 2.0 
qo 1.0 1.0 1.1 1.0 
2 (kg, 15.0 1.325 15.0 1.325 10.0 1.0 15.0 1.325 

R. (ml 2.50 2.50 4.0 2.50 

$T($) 
E”, 

0.50 2.576 0.50 2.576 4.0 1.0 0.50 - 
1.0 1.0 1.0 - 

x? (m) 0 0 0 - 
x:(m) 0 0 0 - 
x2 (ml 0 0 0 - 
.$ Cm) 0 0 0 - 
x? (m) 0 0 0 
xp (m) 0 0 - - 
N* 21 21 11-81 11 
(B> 0.26% 19.6% 2.5% 0.26 % 

a x0 is the initial value of the poloidal flux at the magnetic axis. It is adjusted every iteration step such 
that the toroidal field function g is 1 at the edge. 

* Figure 14 gives the equilibrium plots for this case. 
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0 0.002 0.004 0.006 0.008 0.010 
(A’+‘)* 

FIG. 4. The poloidal flux x and the ellipticity E at flux surface $ =0.5 versus the square of the grid 
size (A$)*. 

number of harmonics, and for both a low+ (0.26%) and a high-p (19.6%) 
up-down symmetric fixed-boundary solution. A negatively sloped straight line plot 
is obtained, indicating the exponential decay of the rms error, characteristic of a 
spectral method. The rms error for the high-/I case is several orders of magnitude 
larger than that for the low-/I case, indicating that many more harmonics are 
needed to achieve the same accuracy. For both cases, the outermost flux surface is 
circular, and details of the various parameter values are given in Table I. The units 
for the pressure and the poloidal flux in Table I and all the other tables are as 
follows. The pressure p (e.g., p. or Pmin) is measured in units of po/Bi where p. = 
47c x l,O-’ henry/meter is the vacuum magnetic permeability, i.e., the real pressure in 
MKS units is prea, = pBgpo newtons/meter* with B, given in teslas. The poloidal 
flux x (e.g., x0) has the dimension of meter* and the real poloidal flux xrea, = 27cB,~ 
webers. 

0 0 0.002 0.002 0.004 0.004 0.006 0.006 0.008 0.008 0.010 0.010 
(A+)* (A+)* 

FIG. 5. The zeroth harmonic x°C and the second harmonic xZr at + = 0.5 versus 
size (A$)>. 

the square of the grid 
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I I I I , , , , , --742 

--l.43 

--?.44 

--l.45 

9.210 - 

9.205 - 

9.200 - 

9.195 ' ' ' ' ' ' ' ' ' 
0 0.002 0.004 0.006 0.008 0.010 

(A+‘)* 

FIG. 6. The third harmonic x3c and the fourth harmonic xk at $ = 0.5 versus the square of the grid 
size (4$)2. 

To check the accuracy of the finite-difference scheme, various quantities are plot- 
ted versus the grid-size squared (dlc/)2 in Figs. 4 to 7. In Fig. 4 the ellipticity E and 
poloidal flux x at the flux surface with flux label $ = 0.5 are plotted. Straight line 
plots show that the convergence is of second order as is expected since a second- 
order central differencing scheme has been used. Similar results are shown in Fig. 5, 
where the zeroth and second-harmonic amplitude at + = 0.5 are plotted. In Figs. 6 
and 7, higher harmonic amplitudes at $ = 0.5 are plotted. The point corresponding 
to ten flux surfaces, or All/ = 0.1, is seen to deviate from the straight line plot. As the 

1.206 - I- E 

1.52 - 

1.5 I - 

1.50 ' ' ' ' ' ' ' ' ' 
0 0.002 0.004 0.006 0.008 0.010 

(A+)' 

FIG. 7. The fifth harmonic xSc and the sixth harmonic # at IJ = 0.5 versus the square of the grid size 
W)2. 
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TABLE II 

The Mean-Square Error E as a Function 
of the Number of Spectral Harmonics N, 

NH E 

3 2.2x lo-” 
4 3.8 x 10-i* 
5 1.7 x lo-‘3 
6 7.8 x 10-l“ 

TABLE III 

External Conducting Coils for TFTR 

Line currents 
(A) 

nT 
(number of turns) 

Ohmic-heating coils: 
I,, = 8000 0.659 0.253 100 

0.767 1.003 71 
0.928 0.971 4 
0.943 1.066 11 
1.002 1.098 2 
1.198 1.573 26 
1.604 1.842 18 
2.332 2.138 9 
3.878 2.085 6 
4.982 0.673 2 

Equilibrium-field coils: 
I,, = 3000 0.670 0.758 40 

0.793 0.792 7 
0.834 0.826 2 
2.839 2.146 -9 
3.880 1.949 - 14 
4.874 0.781 -26 

Variable-curvature coils: 
Ivc= -3000 0.717 1.465 -27 

1.604 2.020 15 
2.332 2.290 4 
4.982 0.851 -3 
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number of harmonics is increased, the grid size has to be refined to ensure second- 
order convergence in A$ for these higher harmonics. The particular up-down sym- 
metric fixed boundary equilibrium considered in Figs. 4 to 7 has a circular out- 
ermost flux surface with the remaining parameters also given in Table I. 

B. Free Boundary 

In the free-boundary iteration, insight into the convergence properties is gained 
by plotting the mean-square error E and the boundary spectral amplitudes versus 
the iteration step. A plot for a case discussed below is shown in Fig. 9e, where log E 
and the third-harmonic boundary amplitude xi’ are plotted. The convergence is 
quite dramatic. 

Another important verification of the code is the behavior of the mean-square 
error E as the number of harmonics N, is increased. The converged value of E is 
expected to decrease as NH increases since now there is more freedom in line tuning 
the boundary shape such that the poloidal flux is as close to a constant as possible. 
Table II shows that indeed E decreases as the number of harmonics increases for a 
TFTR equilibrium whose parameters and external conducting coils are listed in 
Table I and Table III. 

V. APPLICATIONS 

In this section, applications are presented of PSEC calculating various axisym- 
metric tokamak plasma equilibria. Figures 8 to 13 show free-boundary equilibrium 
calculations while Figs. 14 and 15 give examples of fixed-boundary equilibria. 

Figure 8a shows a Columbia University Torus II free-boundary equilibrium 
together with the vacuum flux contours. This is a high-beta (volume-averaged beta 
(p) = 10.8 %) and highly elongated (2.235 to 1) plasma equilibrium with a plasma 
current of 18.57 kA and an aspect ratio of 4.85. The mid-plane safety factor (q) 
profile, current profile, pressure gradient (dp/dx) profile, and pressure profile are 
shown in Figs. 8b, 8c, 8d, and 8e, respectively. Spectral amplitude profiles for the 
ellipticity E, shift (x0’), triangularity (x2’), and squareness (x3’) of the Torus II 
equilibrium are shown in Figs. 9a, 9b, 9c, and 9d, respectively. In Fig. 9e, the 
logarithm of the mean-square error, log E, and boundary squareness xi” for the 
Torus II equilibrium are plotted versus the free-boundary iteration step to illustrate 
the convergence of the iteration scheme. For a high-beta equilibrium such as that in 
Torus II, the number of free-boundary iterations needed for convergence could be 
as high as 267, while for a low-beta equilibrium the number could be as low as 40 
or 50. In Fig. 8 and all the other figures, the current density profile j is measured in 
units of 277po/B0, i.e., the real current density jreal =jBo/2xpo amperes/meter*, the 
pressure profile p is measured in units of po/Bi (preal = pB$po), and p’ = dp/dx is 
measured in units of 2npo/Bo, i.e., (dp/dlorea, = dp/dx B0/271p0 newtons/(meters’ 
weber) with B, given in teslas. 
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FIG. 8. (a) A Columbia University Torus II free-boundary equilibrium with (8) = 10.8% and 
I, = 18.57 kA; (b) to (e) are the mid-plane safety factor (q), current density (j), pressure gradient 
(p’ E dpldx), and pressure (p) profiles. 

An upgrade of Torus II has been designed, and Fig. 10a shows a typical free- 
boundary equilibrium with a plasma current of 14 kA, an average beta of 16.6%, 
and an aspect ratio of 5.3. The q profile, current profile, pressure gradient, and 
pressure profiles are shown in Figs. lob to lOe, with the other parameters being 
given in Table IV. The stability of Torus II [lo] and Torus II upgrade equilibria 
are being studied and will be reported elsewhere. 

A TFTR (Tokamak Fusion Test Reactor) equilibrium with l-MA plasma 
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FIG. 9. The same equilibrium as that in Fig. 8; (a) to (d) are the ellipticity (E), shift (xoc), 
triangularity (x*~), and squareness (x3<) profiles; (e) shows the convergence of the mean-square error E 
and the boundary squareness (xp) as a function of the free-boundary iteration step. 

current, an average beta of 4.7%, and a minor radius of 1 meter is shown in 
Fig. lla. The plasma cross section is almost circular. The profiles of the equilibrium 
are shown in Figs. llb to lle while Table IV gives the other parameters. The 
positions of the coils have been given in Table III. In this run IoH = 9.5 KA, 
Z,, = 9.9 KA, and Zvc = -5 KA. 

A PDX (Poloidal Divertor Experiment) circular discharge with a 335KA plasma 
current and an average beta of 2.6% is shown in Fig. 12. All the actual PDX coils 
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FIG. 10. (a) A free-boundary equilibrium of the Columbia University Torus II Upgrade with 
(/I) = 16.6% and I,= 14 kA; (b) to (e) are the mid-plane safety factor (q), current density (j), pressure 
gradient (p’ s dp/dx), and pressure (p) profiles. 

are included in the calculation. Other relevant parameters are given in Table IV. 
This calculation took five seconds on the Cray-1 computer. 

So far all the free-boundary equilibria are up-down symmetric. PSEC can also 
calculate up-down asymmetric free-boundary equilibria. An example is shown in 
Fig. 13. 

Finally, two examples of fixed-boundary equilibria are given. Figure 14a shows a 
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TABLE IV 

Parameters for the Torus II Equilibrium in Fig. 8, the Torus II Upgrade 
Equilibrium in Fig. 10, the Free-Boundary TFTR Equilibrium in Fig. 11, 

and the Free-Boundary PDX Equilibrium in Fig. 12 

Torus II 
Torus II 
Upgrade TFTR PDX 

X0 

PO 
Pk” 
a1 
40 

“B’, (kg) 
R. (ml 

p 

N” 
(B> 
1, &A) 

-0.0011 -0.00095 -0.277 
0.175 0.175 0.045 
0.0 0.0 0.0 
3.0 2 2 
0.9 0.9 1.0 
0.53 0.53 1.325 
3.3 3.3 15 
0.225 0.225 2.5 
0.047 0.047 1.0 

21 21 11 
5 3 3 

10.8 % 16.6% 4.7% 
18.57 14 1000. 

- 0.0697 
0.03722 
0.0 
2 
0.8 
1.035 
9.597 
1.4 
0.39 

11 
3 
2.6% 

335 

high-beta equilibrium with an average beta of 19.6% while Figs. 14b to 14e give the 
various profiles. An updown asymmetric equilibrium with an average beta of 7% 
is shown in Fig. 15a with the profiles shown in Figs. 15b to 15e. 

VI. SUMMARY 

A new computer code, PSEC, has been developed to compute free-boundary 
toroidal plasma equilibria that are consistent with currents in external coils. The 
spectral variational technique used builds upon a recently published method for 
solving for interior plasma equilibrium once the shape of the plasma-vacuum inter- 
face is known. The attractive features of this code are its fast running speed, its ver- 
satility in being able to compute a wide variety of both low-/l and high-/I toroidal 
equilibrium, and its verified convergence properties. The quasilinearization method 
of solution allows the number of spectral harmonics included to be arbitrarily large, 
subject only to the limitation of computer memory size. This is in contrast to 
techniques previously described that utilize shooting methods that quickly become 
unwieldy as the number of harmonics becomes large. 

Both updown symmetric and asymmetric equilibria can be computed with the 
representation used here. Also, the special treatment of the center point leads to 
extremely accurate solutions near this singular point. A vindication of the represen- 
tation employed lies in the code’s demonstrated ability to compute fast, accurate 
equilibria. 
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FIG. 11. (a) A TFTR free-boundary equilibrium with I,= 1 MA, (8) =4.7%, and minor radius 
a= 1 m; (b) to (e) show the mid-plane safety factor (q). current density (j), pressure gradient 
(p’ = dp/dx), and pressure (p) profiles. 

The PSEC code is one of the PEST [ 111 family of computer programs in that it 
has the capability of writing equilibrium disk tiles that can be used by the PEST 
low-n stability or balloon codes for performing ideal and resistive MHD stability 
analyses. The speed and overstability of this code make it natural for use as the ker- 
nal of an evolution code which solves the time-dependent circuit equations for 
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FIG. 12. A PDX circular discharge with all the PDX coils and (b) = 2.6% and I,,= 335 kA 
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FIG. 13. A free-boundary updown asymmetric equilibrium. 
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FIG. 14. (a) A high-8 ((/I) = 19.6%), fixed-boundary, up-down symmetric equilibrium; (b) to (e) 
give the mid-plane safety factor (q), current density (j), pressure gradient (p’ z dp/dx), and pressure (p) 
profiles. 

external conducting coils to follow the evolution of axisymmetric modes in 
tokamaks on the resistive scale of the external conductors. 

APPENDIX A 

Here we specialize to the updown symmetric case with zy = zi’ = 0 although in 
the code the general up-down asymmetric case is implemented. Then we have only 
two equations which give the derivative boundary conditions at the origin for E 
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FIG. 15. (a) An updown asymmetric, fixed-boundary equilibrium with (/I) = 7 %; (b) to (e) show 
the mid-plane safety factor (q), current density (j), pressure gradient (p’=dp/d;l), and pressure (p) 
protiles. 

and x°C. We assume a more general spectral representation for z than that in 
Eq. (13b) while x is still given by Eq. (13a): 

z(tj, t9) = z”(t)) + ~E~‘($)sin 0 +&z”(tj) cos 8 

+ f @m-W [z”‘(~)c0sm~+~““(~)sin m&j. 
m=2 

(A.1) 



328 LING AND JARDIN 

Equation (A.1 ) reduces to Eq: (13b) if 

zrnC(IC/) = %,mzms(~) (A.2a) 

and 

ZrnS($) = %,mXmCw) (A.2b) 

for m = 2,..., M. For the up-down symmetric case, zoc = zlc =zmc= xms= 0, 
m = 2,..., M. Then we have 

oc = 1 
x1 (l+3E,4) 

T+‘(O) _ E-2 
x1 o --2%:“+x:“(l-3&~~) 1 (A.3) 

and 

+ 
2T E,T* 

---P'(0)-4~(Eo-E~3) 
x;Eo 2x1 

~(~-E;)-E;x;TP'(O),~,+~~$(~E:,+~E,-~) 1 
+ ~(E;-3E~1)(r:")2-+3E,-")(x:')' 

0 

- g 
0 0 [ 

$-~E+6x+(1+5E,;4) 1 
z2sx2c 

+8- ;o;(3E;-E,2) 

Z:” 
- 6-(3E;-E,*) 

fi 

+ 6 x:’ (1 - 3Ec4). 
JT 

APPENDIX B 

The matrix elements of A” in Eq. (21) are as follows: 

-41, =2x~(x2W’2 fi 

A 12 = 2x: (~213 Tad, > 

&=~x;(x~WA) 

(A-4) 
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-4,=2x~(x2WJ~c) & 
A,, = -2x;(x213 TExe) 

A,, = -2~;(x213TExs COS e) & 

A,,=2x;<x2WJzs) 

A1,=2x;(x~hTJis) ,h 

AZ, =A,, ,h@ 

A,, = 2~; (x2&z;) 

A23 =2x~~x2hJ’2c~ 

&,=2x:~x21,z&c) & 

A,, = -2~;(x21,z,xo) 

A,, = -2~$(x=I,z,x, cos e) Jij 

A27=2~~<~=kJ2s~ 

4, =2x~~x=I~z&s) & 

Am =A,, &T 

A,, =A,, 

A,, =2x:<x213 7%) 

A3~=2~:~x=Wz,T~,),/$ 

A,, = -2x;<x24 T2,xo) 

A,, = -2x; (x21, T2,xe cos 8) ,/ij 

A,, =2x;<x21, T2c T2s > 

A~,=2x;<xZWz,T,,) & 

A,, =A,,,/+ 

A = A 24l& 

A::=A,d& 

4, = 2x:Cx213 C:,) fi 

Aa, = -2x~~x21, T,,x,) 

A 46 = -2x$(x2& T3,xe cos e) fi 

A,, = 2x:<x=I, T,, 7’2,) 

&=2x:~x21J&s) fi 

58lj58/3-4 
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A,, =A,, 
&=A,$& 
&=2~:(~~~,7?:s) ,/? 

where 

and 

I, E (xi + z;)/J’, 

T, = z. cos 8 + x0 E-’ sin 0, 

T,,,, = ze cos me - x~(T,,, sin me, 

T,,,, = ze sin m8 - x~(T,,, cos me, 

for m = 2, 3, 4 ,... _ 
The components of the vector 0’ in Eq. (21) are: 

~z=x~(~~,)-2xy(p~(~zg)+R~ggf(~)) 
- 2X~X~qAX~2%~ 

+2x: (z+,l,x~) 

+ x2zJ3(+ze - Z&ix0 + 245) > , 

(B.1) 

03.2) 

03.3) 

P.4) 
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+ 2; xe sin 28 - t~~,~z~ cos 28) + T,, (x&-g 

D4=x$ ( x s (z~ cos 38 - o~,~x~ sin 38) 
> 

p’(xT,,) + R; gg’ 

-xtix&W,J 

+2x2 JI 5 (x0 sin 38 - CJ,,~Z~ cos 38) + T,, ( xtiZ2 -7) 

+x*T,,Z,(~~~z,-~~~x,+~,) 

D6 = -x; xx+ cos 0% p'(XXe COS 6) + R;gg' (y!)) 

+ 2x*xJI&wJ2 cos e> 

+2x$ - 
( 

ze sin 8 + xxou4 cos 8 
J J2 

- Z~X~X~ cos e 

- x*xez, cos O(XSJIZB - 5*$x, + 245) 
> 

) 

D,=x$ x $ (z+ sin 28 - o,,x~ cos 28) 
> 

-2~~ p’(xT,,)+ R;gg’ 2 
( ( )) 

- 2x1/1 x,w (~12 7-2, > 

+2x3 
( + xe cos 28 - o~,~z~ sin 28) + T, (x*l,-3 

+ x*T~Z,(X,~ZZ, - z~*x~ + 1.4 
> 

, 
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4=X$ ( x s (z$ sin 38 - fs,,)xti cos 30) 
> 

p’<xT,,) + R;gg’ 

+2x: ( - 3 Xe cos 30 - aa,3zg sin 38) + 
J( 

T 3s (X& -7) 

+ x2T3J3(Qz, - &xe + ~5) 
> 

, 

where 

x;+z; 
I*=----, 

J2 (B.5) 

u3 = X, sin 8 + z,E-* cos 8, 

u4 E XeXe* + ZeZe+, 

u,=x~z,*-z*%~, 

~~=~~costl+x,E-*sintl, 

(B-6) 

(B.7) 

(B.8) 

(B-9) 

Xtiti is the series for xtis with the xF$, E,,, x&, x2+, x&, and x& terms absent; i,, 
is the series for zs+ with the z$, z&, E,,, x&, x&, x&, and x& terms absent; 
and T2c, T,, and T,,, T3s are given by Eq. (B.3) and Eq. (B.4), respectively, for 
m=2 and 3. 

Instead of the spectral amplitude vector s’in Eq. (20b), we define a symmetric and 
an asymmetric spectral amplitude vector as follows: 

s” = (x4C, x5C )...) xy, 

s” = (x45, x5s )...) xy=. 

Then from Eq. (22) we get 

where a” and a” are (M- 3) x (M- 3) matrices, and L? and da are (M- 3) x 1 vec- 
tors. We use a diagonal d and d whose elements are given by 

aTi = 24 * +*)‘*(X*z3 7Q, 

a;.=2X$$ (m-*“*(X*z3 Pm,), 
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where i = l,..., M- 3, m = i + 3, I, is given by Eq. (B.l) and T,, and T,, are given 
in Eqs. (B.3) and (B.4). The components of & and &’ are: 

(zti cos m0 - (T~,~x~ sin me) 

- ‘&x~&L,~2 > 

x0 sin me - CS~,~Z~ cos m0) + T,,,, 

+ x2T,,,,Z~(X~;zz - Z;;x, + us) , 

(zti sin mtl - aa,mxti cos m0) 

-2x~x1~&TwzsZ2) 

+ 2x; x0 cos me- a,,z, sin me) + T,,,, (x,l,-7) 

+ x2Tm,Z3(X;;zo - Z;;x, + us) , 

where i = l,..., A4 - 3, m = i + 3, 2;; and 2;; are the series for xtiti and zll/+ with the 
XT; term absent, and 2;; and 2;; are the series for xtiti and ztiLs with the term XT; 
absent. 
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